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Abstract
Purpose of Review Surgical deactivation of migraine trigger sites by extracranial neurovascular decompression has 
produced encouraging results and challenged previous understanding of primary headaches. However, there is a 
lack of in-depth discussions on the pathophysiological basis of migraine surgery. This narrative review provides 
interpretation of relevant literature from the perspective of compressive neuropathic etiology, pathogenesis, and 
pathophysiology of migraine.
Recent Findings Vasodilation, which can be asymptomatic in healthy subjects, may produce compression of cranial nerves 
in migraineurs at both extracranial and intracranial entrapment-prone sites. This may be predetermined by inherited and 
acquired anatomical factors and may include double crush-type lesions. Neurovascular compression can lead to sensitiza-
tion of the trigeminal pathways and resultant cephalic hypersensitivity. While descending (central) trigeminal activation is 
possible, symptomatic intracranial sensitization can probably only occur in subjects who develop neurovascular entrapment 
of cranial nerves, which can explain why migraine does not invariably afflict everyone. Nerve compression–induced focal 
neuroinflammation and sensitization of any cranial nerve may neurogenically spread to other cranial nerves, which can 
explain the clinical complexity of migraine. Trigger dose-dependent alternating intensity of sensitization and its synchrony 
with cyclic central neural activities, including asymmetric nasal vasomotor oscillations, may explain the laterality and phasic 
nature of migraine pain. Intracranial allodynia, i.e., pain sensation upon non-painful stimulation, may better explain migraine 
pain than merely nociceptive mechanisms, because migraine cannot be associated with considerable intracranial structural 
changes and consequent painful stimuli.
Summary Understanding migraine as an intracranial allodynia could stimulate research aimed at elucidating the possible 
neuropathic compressive etiology of migraine and other primary headaches.
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Introduction

Why does migraine headache exist? Many theories have 
been proposed to explain this enigmatic and disabling 
condition that affects over a billion people worldwide 
[1]. Success of migraine treatment by trigger site deac-
tivation [2, 3•, 4], commonly understood as decompres-
sion of the occipital nerves and extracranial branches of 
the trigeminal nerve, suggests neuropathic etiology of 
migraine. The surgical, entrapment concept of migraine 

is in line with its numerous neuropathic features [5•]. On 
the other hand, there are many questions unanswered by 
any theory of migraine. We have no clear understanding 
of the nature of migraine headache, its cyclicity, and side 
shift. It still needs to be explained why after surgical trig-
ger site deactivation, not all migraine patients improve 
[2, 3•, 4, 6, 7] and new trigger sites emerge [2, 4, 6]. 
While the number of publications on migraine surgery 
is growing, in-depth analyses of the pathophysiological 
basis of this treatment are limited [8]. In an attempt to 
address these issues, the below sections provide an inter-
pretative literature review from the perspective of the 
entrapment concept of migraine. * Valdas Macionis 
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Vasodilation and Neurovascular Entrapment 
in Migraine

The time-honored vasodilation theory of migraine [9] has 
been a subject of dispute between advocates [10] and crit-
ics [11] of this concept. The intensely debated extracranial 
vasodilation as a cause of migraine [12, 13] can be sup-
ported by the fact that migraine surgery reveals signs of 
extracranial neurovascular entrapment. Dilation and pulsa-
tion of the occipital and superficial temporal artery have 
been suggested to cause irritation of the adjacent greater 
occipital [14] and auriculotemporal nerve [15], respec-
tively, and thus trigger migraine attacks. Histological 
changes of the arteries at these sites have been observed 
in migraineurs [16]. In tight compartments, even slight 
vasodilation may produce pressures of 30 mm Hg that are 
sufficient to disturb nerve function [17]. Unfortunately, no 
studies could be found to attempt induction of neurovascu-
lar compression by vasodilation in animals.

Calcitonin gene–related peptide (CGRP), a potent vaso-
dilator, plays an important function in migraine patho-
physiology [18–20]. Peripheral nerve injury can stimulate 
expression of calcitonin gene–related peptide in the dorsal 
root ganglia [21] and in the nerve trunk [22], which may 
lead to paraneural and intraneural vasodilation. Sympa-
thetic fiber damage may also contribute to intraneural 
hyperemia following nerve lesion [23]. Percutaneous 
trigeminal nerve stimulation produces increased concen-
trations of cerebral CGRP and cerebral vasodilation [24].  
Even antidromic stimulation of sensory nerves may  
result in CGRP perivascular release and vasodilation [20, 
25]. Thus, compression of the trigeminal nerve can lead to  
its hyperactivity and consequent secondary vasodilatory 
compression because of CGRP release at the perivascular 
neural terminals. In migraineurs, trigeminal nerve hyper-
activity may also be induced by environmental irritants, 
which have been shown to stimulate CGRP release [26].

Cerebral vasodilation may be caused by activation of 
neural pathways other than the trigeminal system, e.g., via 
olfactory stimulation [27] or other mechanisms of neuro-
vascular coupling [28, 29]. The latter include fluctuations 
of blood oxygen levels. Hypoxic vasodilation is one of 
the essential mechanisms of blood perfusion regulation 
[30, 31], which particularly applies to cerebral circula-
tion [32, 33]. Hypoxia, in association with cerebral vaso-
dilation, has been shown to trigger migraine [34]. Most 
migraine triggers lead to direct or indirect vasodilation 
[35, 36], probably via induction of metabolic processes 
that cause hypoxia or result from it [37]. This includes 
reduced barometric pressure [36, 38] that may produce 
hypoxia [39]. Cerebral hypoxic vasodilation in migraine 
can explain observations of cerebral hypoperfusion during 

migraine attacks [40–43]. Hypoxemia may accompany 
patent foramen ovale (foramen Botalli) associated with 
atrial right-to left shunt [44], one of the risk factors of 
migraine [45]. Also, the rhinogenic etiology of primary 
headaches [46–48] may be due to hypoxemia caused by 
airway obstruction.

Relevantly, many effective means of migraine treatment 
can be associated with direct or indirect abolishment of 
vasodilation. Transcutaneous neurostimulation techniques 
[49] may involve electricity-induced vasoconstriction, both  
directly and via neural pathways [50]. Notably, local vaso-
constriction can spread to other vascular areas [51, 52]. Oxy-
gen has been shown to be effective in the treatment of primary  
headaches including migraine and cluster headache [53], 
which may be due to the cerebral vasoconstrictive effects of 
hyperoxemia [54, 55, 53]. This as well applies to the success  
of interictal oxygen therapy in a series of migraineurs with 
patent cardiac foramen ovale [56]. It is also of relevance  
that the 5-HT and CGRP receptor-targeting medication of 
migraine [57], as well as some natural means such as cold 
therapy [58], have a vasoconstrictive effect.

Neurovascular Entrapment at Trigger Points 
and Trigger Sites

Trigger points have been associated with hypersensitive spots 
in taut muscle bands and referred pain upon pressure [59–61]. 
Anatomical studies have revealed that myofascial trigger points 
correspond to sites where nerves enter muscles [62–65]. These 
nerves are accompanied by corresponding vessels [66–70], 
which makes the so-called perforating triad (nerve, artery, and 
vein) surrounded by fascia [61]. Such anatomical arrangement 
has been postulated to cause neural entrapment [61]. At trigger 
points, nerve compression may be produced both by muscle 
activity and by vessel dilation. Positive results of botulinum 
injection in trigger point zones in some neuropathic conditions 
[71, 72] (as well as in migraine [72, 73]) may be due to local 
muscle paralysis and consequent loosening of the myofascial 
ring that surrounds the “perforating triad.”

The term of trigger sites in migraine surgery is some-
what different from the above definition of trigger points. 
While the tight vicinity between nerves and vessels is also an 
essential feature of the extracranial trigger sites, neurovas-
cular entrapment here is primarily associated with adjacent 
myo-fibro-osseous structures [2] other than the fascia around 
the typical neurovascular perforators of muscles. Only the 
septonasal site [46] and patent cardiac foramen ovale [45] 
do not clearly fit the entrapment concept. Dysfunction at 
these sites, however, may cause hypoxemia and consequent 
vasodilatory compression of cranial nerves, as discussed in 
the preceding section.
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Intracranial occurrence of neurovascular compression 
of almost all cranial nerves except olfactory has been well 
documented [74–76, 77•]. The main focus of migraine sur-
geons is multiple extracranial head sites where the sensory 
nerves are accompanied by corresponding arteries and 
veins [78, 79] (which is a general rule [80]). Neurovascular 
compression, however, may not be limited to extracranial 
areas. Cranial foramina and fissures that convey cranial 
nerves along vessels are potential sites of neural entrap-
ment. Intracranially, branches of the trigeminal and other 
cranial nerves closely adhere to vessels [81]. This seems 
to apply to the tiny collaterals of the intracranial trigemi-
nal nociceptors that along with emissary veins reach the 
extracranial periosteum via emissary canals [82–84]. An 
important possible site of intracranial neurovascular com-
pression of multiple cranial nerves is the cavernous sinus. 
This compartment is surrounded by two dural layers and 
includes the internal carotid artery [85, 86] (Fig. 1), slight 
dilation of which may increase intracavernous pressure and 
result in neural compression within the sinus. Cranial nerve 
entrapment may also occur at the transition zones where  
the nerves pierce the dura mater. Spinal dissections have 
shown that the dura mater blends with the epineurium of  
spinal nerves [87, 88], which by analogy may apply to cra-
nial nerves as well. The neural-dural transition zone is a tight 
water-impermeable junction [87], which makes the piercing 
nerves here susceptible to entrapment. Notably, the trigemi-
nal nerve and ganglion are well vascularized and contain 
intraneural arteries of considerable size [89]. Logically, 
intraneural vasodilation may also cause neural compres-
sion, if epineurial tissue is tight due to anomalies or fibrosis 
(Fig. 2). Obviously, this type of neural lesion may occur at 
any point of the nerve trunk. Thus, extracranial, intracra-
nial, paraneural, and intraneural neurovascular compression  
is anatomically possible.

It is known that a focal lesion of the nerve trunk makes 
its entire length vulnerable (sensitized) to secondary com-
pression, the occurrence of which can lead to double crush 
syndrome [90, 91]. According to this concept, trigger points 
can be regarded as secondary sites of compression due to a 
primary, more proximal neural entrapment. The latter infer-
ence can be supported by occurrence of trigger points in 
thoracic outlet syndrome (TOS) [92]. Theoretically, a reverse 
situation is also possible: Trigger points may act as primary 
entrapment sites and lead to proximal neural lesion, because 
of the initial trigger point-induced sensitization.

Cranial nerves may also be affected by a double crush-type 
lesion. Recent measurement studies suggest that narrow fora-
men ovale and rotundum may be secondary sites of trigemi-
nal nerve compression in trigeminal neuralgia [93, 94•, 95]. 
According to the double crush concept, extracranial trigger 
sites in migraine may be due to intracranial nerve compres-
sion, which could account for incomplete improvement and 
new extracranial trigger sites after deactivation surgery [4, 
6]. Multiple extracranial trigger sites in migraine echo with 
multiple extracephalic trigger points in peripheral neuropathic 
conditions (notably, in TOS [92]). In theory, development of 
intracranial multiple trigger points is also possible. The dura 
mater is a dense network of collagen fibers, some of which 
crisscross each other and are oriented transversely to the longi-
tudinal axis of blood vessels [96]. This may create a perforating 
triad-like unit in the dura, because trigeminal nerve branches 
accompany blood vessels [83]. The dural collagen lattices can 
serve as tunnels for neurovascular entrapment, especially if the 
trigeminal nerve is presensitized by proximal lesion.

Fig. 1  The cavernous sinus as a possible intracranial site of vasodila-
tory neurovascular compression. Adapted from Gray and Lewis (Figure  
786, public domain) [86]

Fig. 2  Hypothetical neurovascular compression due to intraneural 
vasodilation. A Normal neurovascular relationship. B Elasticity of the 
epineurium allows expansion of the intraneural volume and thus pre-
vents intraneural compression after intraneural vasodilation,   which, 
however, C can cause intraneural compression if the epineurium is tight 
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Central Versus Peripheral Neuropathic 
Origin of Migraine Pain

While it is recognized that trigeminal sensitization drives 
migraine headaches, an essential matter of contemporary 
debate remains whether the sensitization originates in the 
periphery or in the brain [97, 98]. Although this question has 
been supposed to be the chicken or the egg dilemma [99], 
there are substantial facts that speak in favor of peripheral 
genesis of sensitization in migraine.

It is generally agreed that peripheral sensitization induces 
central sensitization [100–102]. It is not clear, however, 
whether central sensitization can persist without periph-
eral input. Although, theoretically, autonomous (periphery 
independent) central sensitization is possible, there is little 
practical evidence for this concept [103•]. Central neural 
factors definitely play an important role in migraine [104]. 
Yet, if trigeminal sensitization were inducible by descending 
excitation mechanisms alone, then we would likely observe 
cranial nociceptive hypersensitivity in such conditions as epi-
lepsy, which does not seem to be the case. (However, there 
are numerous pathophysiological and clinical similarities 
between epilepsy and migraine [105, 106].) The observed 
activation of central structures, which has been supposed to 
serve as a proof of central origin of migraine [98], may in 
fact arise from peripheral neural input [102]. While cortical 
spreading depression (CSD) has been suggested to be the 
central excitatory mechanism responsible for migraine aura 
and trigeminal system activation [107], there is no straight-
forward evidence for applicability of this supposition to 
humans [108]. Furthermore, most of the CSD-relevant ani-
mal experiments involve direct physical stimulation of the 
cerebral cortex following craniotomy [109–112]. Injuries of 
this magnitude do not commonly occur in migraine. This 
problem has been attempted to overcome by indirect, optoge-
netic stimulation of the brain cortex. The latter approach, 
however, may produce direct excitation of trigeminal noci-
ceptors by light, surgical exposure of the animal skull, and 
fixation in a stereotaxic frame [113–115]. Sleep deprivation 
is probably the only model that has shown noninvasive acti-
vation of the trigeminal system in animals [116]. However, 
in sleep-deprived subjects who develop hypersensitivity, 
peripheral sensitization may be due to proximal neural com-
pression induced by negative postural impact [117] that in 
turn may be due to fatigue and muscle coordination imbal-
ance [118], as also implied by a sleep deprivation study that 
has found sensitization of craniofacial muscles [119].

The existence of peripheral input-independent central sen-
sitization in migraine could be reasoned on the basis of the 
continuing mediating role of CGRP [18, 19] following initial 
peripheral sensitization. However, CGRP has no direct neu-
rostimulatory potential [120]. Relevant electrophysiological 

studies are lacking to confirm direct systemic contribution of 
CGRP to nociceptive sensitization. Notably, a recent experi-
mental study has not found an association between CGRP and 
neuropathic pain [121]. On the other hand, vasodilatory effects 
of CGRP may have a role in perpetuating neurovascular com-
pression, which may partly support the descending origin of 
migraine pain: Initial trigeminal activation may be caused by 
other means than neural compression. The latter, however, may 
be required to drive sensitization.

Increased concentrations of neurotransmitters obviously 
are involved in both peripheral and central sensitization. 
However, while the physiology of cranial nociceptors seems 
to be analogous to those of other tissues [122], studies of 
pharmacological induction of migraine in humans do not 
mention remote extracephalic pain to accompany induced 
headache [123–125]. Also, antimigraine triptans do not 
seem to be effective in noncerebral analgesia [126, 127]. 
While this may be attributed to the different embryologi-
cal origin of the trigeminal and dorsal root ganglia [126], a 
considerable doubt arises concerning the concepts of pure 
neurochemical initiation of migraine pain.

Peripheral Nerve Lesion–Induced 
Sensitization in Migraine

In neurophysiological terms, peripheral sensitization is 
synonymous with excitation threshold decrease and spon-
taneous (ongoing) activity of afferent neurons [101, 128]. 
Ongoing activity has been shown to be dependent on neuro-
inflammatory input: without the latter ongoing activity fades 
[129]. The same applies to nociceptive fiber mechanosensi-
tivity [130–132] and cutaneous hypersensitivity [131, 133, 
134]. Notably, non-inflammatory axonal transport disrup-
tion alone does not induce ongoing activity [129] as in the 
case of focal neuroinflammation [129, 131, 132] that also 
impairs intraaxonal circulation [132, 134, 135]. Yet, simi-
larly to neuroinflammation, non-inflammatory axoplasmic 
block results in cutaneous hypersensitivity [134], as well as 
in brief transient axonal mechanical sensitivity [129]. This 
may explain development of hypersensitivity via subtle cra-
nial neurovascular compression in migraine patients.

There are indirect indications that extent of sensitiza-
tion may be trigger dose- and exposure time-dependent. For 
example, hypersensitivity tends to last longer after invasive 
nerve manipulation, such as spared nerve injury [136, 137], 
than after atraumatic induction of ongoing activity [131, 
133]. Most important is that sensitization lasts months 
after nerve injury [138], but only hours or days after local 
peripheral tissue injury [101, 139, 140]. Another indirect 
evidence of input dose-dependent sensitization can be seen 
in double crush-type neural lesions [90]. Cumulative effects 
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of systemic neuroinflammation and nerve compression 
(which involves both axoplasmic transport disruption and 
focal neuroinflammation [17, 141]) can also be regarded 
as a double-crush neural injury [117]. Cerebral vasodila-
tion and CGRP concentrations seem to be dependent on the 
intensity of trigeminal stimulation [24], which implies a 
corresponding relationship between trigger dose and neu-
rovascular compression of the trigeminal nerve. Notably, 
simultaneous combined action of several migraine triggers 
may be necessary to induce a migraine attack [142, 143], 
and not every prodrome develops into a migraine headache 
[144, 145]. The phenomena of additive sensitization may be 
involved in migraine chronification [146].

It is of great importance to migraine pathophysiology that 
lesions of different cranial nerves may trigger extraterritorial 
sensitization. Nociceptive hypersensitivity of rat hind limbs 
can be induced by subdiaphragmatic vagotomy [147–149]. 
Transection of the C2–C4 spinal nerves induces cutaneous 
hypersensitivity in the trigeminal zone of rats, which has been 
suggested to be due to sensitizing effects of astroglial cell 
activation [150]. Ligation of the buccal branch of the facial 
nerve also induces facial hypersensitivity, which has been 
associated with neuroinflammatory mediation [151]. These 
phenomena are also explainable by numerous anatomical and 
functional interconnections between the trigeminal, facial, 
glossopharyngeal, hypoglossal, vagus, and vestibulocochlear 
nerves [152–157]. The trigeminal nerve is the most complex 
nerve, branches of which are closely intertwined with other 
cranial nerves and vessels [81]. Trigeminal innervation areas 
overlap with innervation of other cranial [154] and spinal 

nerves [154, 158]. The facial, glossopharyngeal, hypoglossal, 
and vagus nerves contribute to posterior cranial fossa innerva-
tion along with the occipital nerves [158]. Equally important 
is the transcranial communication between intracranial and 
extracranial sensory innervation [82–84, 158]. Transaxonal 
signaling, which seems to be a normal neurophysiological 
phenomenon [159], and induction of transaxonal degenera-
tion of healthy axons via primary injury of nearby neural 
fibers [160] should be taken into account as well. Notably, 
neurovascular compression has been speculated to result in 
transaxonal (ephaptic) impulse spread [161], possibly due to 
demyelination that usually accompanies nerve entrapment. 
Transneuronal sensitization of intact cranial nerves via injury 
of other cranial nerves is in line with the models of spared 
nerve injury, which show that intact sensory fibers can be 
sensitized by compressive or axotomy injury of the neigh-
boring neurons at various levels [136, 162–164]. (While it 
has been contended that motor fiber lesion is more important 
for transneuronal sensitization [165], it is noteworthy that 
in relevant explorations, both motor and sensory fiber dam-
age occur after ventral spinal root injury, because they con-
tain a considerable amount of sensory afferents [166].) The 
phenomena of indirect sensitization may also involve nerve 
injury-induced neuroinflammation, which can act at the level 
of the nerve trunk [131, 134, 133, 167, 168] and ganglia [167, 
137, 168], including the trigeminal ganglion [169], as well as 
at the level of the spinal trigeminal subnucleus caudalis [170, 
169]. The pathophysiology of migraine may be dependent on 
neuroinflammatory processes [171], which can be a conse-
quence of neural lesion. Cranial neural entrapment-induced 

Fig. 3  A Simplified diagram of cranial trigeminocervical sensory 
anatomy and  B neurogenic spread of focal nerve compression–
induced neuroinflammation and consequent sensitization. The first-
order neurons schematically represent all types of sensory neurons. 
This also applies to trigeminal proprioceptive neurons, which have 

their soma in the mesencephalic nucleus (not shown). DRG = dorsal 
root ganglion. *Upon non-painful stimulation of sensory terminals 
(not shown).**Upon painful or certain threshold exceeding non-
painful stimulation of sensory terminals (not shown)
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focal neuroinflammation may spread both ortho- and antidro-
mically, similarly to neurogenic inflammation [172], which 
could explain the cascading activation of the trigeminovas-
cular system [173, 171] (Fig. 3), as well as sensitization of 
multiple cranial nerves with the resultant clinical diversity of 
migraine [99]. Thus, theoretically, trigeminal pathways can be 
activated by damage to cranial nerves other than trigeminal.

Schumacher‑Wolff Experiment and the Enigma  
of the Source of Migraine Pain

Schumacher’s and Wolff’s (S&W) unique exploration of 
headache response to an artificial increase in cerebrospinal 
fluid (CSF) pressure (up to 70 cm H2O above physiological 
levels) included several separate experiments [174], most 
significant of which are the first two. First, this investiga-
tion has convincingly demonstrated that headache induced 
by histamine, a potent vasodilator, can almost immediately 
be abolished by considerably raising CSF pressure and elic-
ited again by reducing it (Fig. 4A). Notably, it was possible 
to repeat this cycle twice and thrice in three and two sub-
jects, respectively. Altogether, this process was observed 

in seven horizontally positioned patients (presumably non-
migraineurs) who required a diagnostic lumbar puncture for 
unreported reasons. The magnitude of CSF pressure was 
manipulated by changing the height of the physiological 
saline column in a rubber tubing connected to the puncture 
needle. Second, in six subjects with a migraine attack, step-
wise artificial elevation of the CSF pressure had no consid-
erable effect on the headache intensity (Fig. 4B). Elevation 
of CSF pressure also did not reduce headache in another 
three patients with systemic hypertension.

While this study can be found to have many limitations 
according to modern protocols, the first Schumacher’s and 
Wolff’s conclusion that histamine-induced distension of 
cerebral vessels causes headache is difficult to refute. The 
authors mechanistically explained the abolishment of vas-
odilation-induced acute headache by the drastic increase in 
CSF pressure and resultant compression of dilated cerebral 
vessels [174]. This conclusion suggests that excessive vaso-
dilation serves as a mechanical painful stimulus to the vas-
cular trigeminal terminals. Schumacher and Wolff ascribed 
the failure to abate the spontaneous migraine headaches to 
the origin of the pain from extracranial arteries (presumably, 
to their painful vasodilation) and to the fact that these vessels 

Fig. 4  A modified version of the two graphs of Schumacher’s and 
Wolff’s experiment [174]. This side-by-side comparison of headache 
response to elevation of CSF pressure (represented here by the height 

of the fluid column in the measurement tube) indicates different nature 
of A  histamine-provoked and B  spontaneous migraine headaches, 
which may be due to absence or presence of sensitization, respectively
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are unreachable to CSF. Today, however, the unresponsive-
ness of the true migraine headaches to the elevation of 
intracranial pressure deserves a more complex explanation.

Neurovascular Compression‑Induced Allodynia 
as the True Nature of Migraine Headache

A contemporary view of S&W experiment suggests that 
migraine and cerebral vasodilation-induced headaches are 
of different nature. Naturally, Schumacher and Wolff could 
not know anything about peripheral and central sensitiza-
tion [175], which must have been present in their migraine 
patients but absent in the subjects with artificially induced 
headaches. Sensitization clinically presents as hypersensitiv-
ity that includes hyperalgesia (i.e., an increased sensitivity 
to painful stimuli) and allodynia (i.e., painful sensations to 
non-painful stimuli). For the cerebral cortex to perceive pain 
in the absence of sensitization, the terminals of peripheral 
nociceptors must be stimulated by painful stimuli produced 
by noxious events, such as, tissue injury or inflammation. 
Normally, in migraineurs, there are no obvious active or 
potential lesional processes that could produce painful 
stimuli. Some theories of migraine suggest that it is cen-
tral neural activity-induced neurogenic inflammation of the 
dura and intracranial vasculature that causes headache [173, 
171]. However, inflammatory mechanisms of migraine lack 
unequivocal experimental support [176]. While neurogenic 
inflammation may contribute to pain by sensitizing nocicep-
tors [172], it has not been shown that such inflammation can 
act as a direct nociceptive input. Multiple repeated attacks 
of migraine do not seem to produce considerable structural 
brain changes [176, 177], which one would expect as a con-
sequence of inflammation [178]. Logically, if there are no 
intracranial processes that could produce painful stimuli, 
then it is non-painful stimuli that cause migraine headaches. 
By definition, this means that migraine headache is intrac-
ranial allodynia due to trigeminal sensitization [179, 180], 
which seems to be more likely due to compressive cranial 
nerve lesion than to some other noxious events, as discussed 
in the relevant sections above.

Cranial allodynia in migraineurs is common [99, 181•, 182] 
and presents not only as skin allodynia [183–186] but also as 
visual allodynia (photophobia) [187, 188]. Allodynia is believed 
to involve interneuronal disinhibition and consequent collat-
eralization of the non-nociceptive pathway into the sensitized 
nociceptive route that is an anatomical substrate of hyperalge-
sia [175]. Importantly, interneuronal disinhibition may require 
reduced afferent input via peripheral neural injury [189, 190•], 
which in migraine can occur via cranial neural entrapment.

While it is thought that meningeal sensory response is 
only nociceptive [122, 191], there is sufficient functional 
anatomical research that supports allodynic nature of 

migraine headache. Experimental observations show that the 
dura is sensitive to non-painful stimuli produced by applica-
tion of von Frey monofilaments [122, 192], which are used 
to detect allodynia. The dura possesses mechanosensitive 
innervation by low-threshold A-neurons [191], including 
A-beta neurons, which are commonly non-nociceptive, and 
nociceptive A-delta neurons [173, 193], which may have 
a non-nociceptive subpopulation [194]. Dural nociceptive 
C-fibers [191] may also be involved in non-nociceptive 
transmission [194]. The A-delta neurons have Ruffini-like 
terminals at the sites of confluence of sinuses, at the super-
ficial cerebral vein entrance into the sagittal sinus, and at the 
coronal sutures; the A-delta fibers terminate jointly with the 
C-fibers in capillaries and postcapillary venules [195, 196]. 
The dural Ruffini terminals are thought to detect tension 
[195, 196], similarly to their non-nociceptive counterparts 
in the skin [197]. Also, there are recently discovered cerebral 
perivascular interneurons that seem to take part in mecha-
noreception [198].

Conjecturally, not only nociceptive but also non-nociceptive 
neurons can be sensitized, because experimental research indi-
cates that ongoing activity can develop in all types of sensory 
fibers [129, 199]. Sensitized mechanoreceptors require rela-
tively less intense stimuli to produce neural impulses, which 
can explain intracranial allodynia due to normally non-painful 
intracranial vasodilation, elevation of intracranial pressure, and 
arterial pulsation [179]. (Throbbing pain in tissue infections, 
e.g., in pulpitis [200], may have an allodynic component.) Allo-
dynia can well account for exacerbation of migraine headache 
during coughing, bending down, and the Queckenstedt maneu-
ver (Q-test) [201–204], which lead to intracranial venous dila-
tion that normally is non-painful. Thus, non-painful intracranial 
mechanical stimuli, which are always present in the form of 
intracranial pressure fluctuations, may be sufficient to produce 
allodynic headaches and their varying subjective perceptions 
in migraine patients.

What then about the histamine-induced headache in S&W 
experiment [174], as well as in modern models of artificial 
headache induction? S&W study indicates that intracra-
nial vasodilation, as a stimulus for immediate headache in 
healthy subjects, should probably be of greater extent than 
that revealed by recent imaging studies of induced headache 
in migraineurs [205, 206], who are known to have relatively 
low headache threshold [181•]. It is likely that increased 
CSF pressure in S&W experiment did not diminish migraine 
pain because of continuing intracranial allodynia, which 
could have been caused by vasodilation-induced neural 
compression at extracranial as well as intracranial sites. 
Allodynia may have been persisting even after vasodilation 
was abolished either spontaneously or artificially, because 
sensitization does not fade abruptly [101, 129, 131, 133, 
134, 136, 138] (see the next section for more elaboration). 
Noteworthy in this respect is that anti-migraine triptans, 
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which are known for their vasoconstrictive properties [207], 
are not effective in migraineurs with established allodynia 
[208]. Furthermore, it is roughly known that depending on 
the pharmacological substance the time point of occurrence 
of artificial headache varies [123]. While immediate head-
aches may be due to pharmacologically induced painful 
intracranial vasodilation, gradual worsening of headaches in 
the course of migraine attack [209] can be explained by slow 
development of symptomatic sensitization [101, 208] (or 
exacerbation of background subsymptomatic sensitization) 
following subtle vasodilation-induced neurovascular com-
pression. Determining the detailed time course of cranial 
vasodilation during migraine headaches could bring more 
light into S&W findings.

Provoked headaches are worse in migraineurs than in 
healthy controls [123]. This is in agreement with neurovascular 
compression-induced sensitization, because it can lower sen-
sory threshold in migraine patients, both ictally and interictally 
[181•, 210]. Certainly, in artificial headache, not only vascu-
lar but also direct neural activation should be considered, as 
implied by, e.g., multiple effects of nitroglycerin [125], which, 
however, does not seem to have immediate algesic effect. By 
inverted analogy, the same may apply to the mechanisms of 
some anti-migraine drugs, as in the case of triptans [208].

Intracranial Allodynic Stimuli

Sensitization alone without certain stimuli does not mean 
pain. The abolishment of histamine-induced headache in the 
non-migraineurs in S&W study [174] indicates that, in the 
absence of sensitization, even supra-physiological elevation 
of CSF is not painful. On the other hand, the slight intensifi-
cation of headache in S&W migraine patients (Fig. 4B) may 
have been due to the mechanical stimulating effect of CSF 
pressure elevation and consequent worsening of preexisting 
allodynia. Increased intracranial pressure has been docu-
mented in some migraine patients [211–213]. In presence 
of sensitization, elevated intracranial pressure, even within 
normal ranges, may act as a threshold-exceeding stimulus 
for allodynia (and contribute to neural compression). As 
an allodynic stimulus, elevated intracranial pressure can 
explain the common occurrence of pressure pain percep-
tion in migraineurs [209, 214]. Of note, while migraine 
treatment with trepanation and craniotomy [215] has his-
torically been regarded as a misconception, there are mod-
ern-day indications that surgical intracranial decompression 
may be beneficial to migraine patients [216, 217]. Ancient 
cranial trepanations may have been performed for headache 
treatment, because the geographical distance between sites 
where trepanned skulls have been found [218] suggests that 
this procedure may have developed independently in differ-
ent ancient cultures. Multiple sites and different historical 

times of cranial paleo surgery also imply that intracranial 
decompression may have provided at least temporary relief 
of persistent headaches.

Cerebral vasoactivity, along with intracranial pressure, may 
act as threshold-exceeding allodynic stimuli and may be the 
cause of throbbing pain [209, 214]. Vasoactivity can explain 
why migraine pain is not invariably diffuse but may occur 
at varying cephalic locations [214, 219], may be throbbing, 
and may spread from one region to another [214]. Headache 
spreading indicates spatial spread of occurrence of threshold-
exceeding allodynic stimuli. This is in line with fluctuations 
of brain perfusion, which seems to be never perfectly symmet-
ric and uniform throughout the brain, both in healthy subjects 
[220, 221] and in migraineurs [222–225]. The circumscribed 
zones of hypoperfusion and hyperperfusion during migraine 
attack [223] may involve local vasoconstriction and vasodi-
lation. Imaging studies have also revealed transient venous 
asymmetry during migraine attacks [226] and the “index 
vein” in migraine with aura [227]. Of note, vasodilation can 
spread from an initial focus to other areas via the mechanism 
of conducted vasodilation [228]. An analogous phenomenon 
is associated with vasoconstriction [51, 52].

Nerve Entrapment and Laterality  
of Migraine Headache

Migraine headaches can be unilateral, bilateral, and side-
switching [219], which may correspond to occurrence of 
neurovascular entrapment at only one or at both sides of the 
head. One of the anatomical reasons for one-sided trigeminal 
entrapment may be that the skull is never ideally symmetric 
[229]. Association of anatomical asymmetry with unilateral 
migraine headache has been recently shown [230•]. Unilateral 
or bilateral headache may result from synergy of one-sided or 
both-sided neurovascular entrapment with certain factors that 
facilitate laterality of intracranial sensitization. For example, 
compressive neuropathies of the upper extremity, which have 
been found to occur often in migraine patients [231, 232], may 
contribute to one-sided trigeminal sensitization via extremity 
nerve lesion, because of the anatomical closeness and pos-
sible convergence of trigeminal and cervicospinal pathways. 
Alternating laterality of migraine pain may be associated with 
cyclic activity of hemispheres and lateralized rhythmic activity 
of autonomic nervous system [233–235]. This may facilitate 
induction of one-sided intracranial sensitization in synchrony 
with neurovascular entrapment, which alone may not be suf-
ficient for symptomatic sensitization. Important in this respect 
is asymmetry of the oscillating nasal vasomotor activity (i.e., 
vasoconstriction and vasodilation) [236, 237] and its side-shift, 
which can occur spontaneously or via certain stimulation [236, 
237]. Asymmetry here means different amplitudes of vasomo-
tor oscillations, which in relative effect produce vasodilation 
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on one side and vasoconstriction on the other [236, 237]. This 
phenomenon has been explained by rhythmic asymmetry of 
oscillating activity of sympathetic neurons in the brainstem 
[235]. Nasal vasoconstriction has also been speculated to 
occur synchronically with ipsilateral cerebral vasoconstriction 
[235]. Notably, the nasal cycle may transform [238] and even be 
absent [239, 240]; it can be influenced by age, posture, exercise, 
and other factors, including olfaction [241]. Possible triggering 
of headaches by latent recurrent infections [242], in particular 
by one-sided activity of herpes simplex, which is known to 
invade the trigeminal ganglion [243, 244], may also influence 
laterality of migraine attacks. Position during sleep may later-
ally affect regional blood circulation [245] and thus cause one-
sided neurovascular compression. It is also of consideration that 
cervicogenic headache, which can overlap with clinical features 
of migraine and can be unilateral as well as bilateral [246], may 
be caused by postural one-sided or both-sided occipital nerve 
compression and consequent trigeminal activation.

Neural Compression and Phasic Nature 
of Migraine

Cyclic features of migraine [181] and gradual intensifica-
tion of pain after the onset of migraine attack [209] could be 
explained by the fact that symptomatic trigeminal sensitization 
takes a certain time to develop [101, 208]. Ongoing activity 
reaches its peak at about 4–5 days after induction of peripheral 
neuritis [129]. This tendency is also applicable to cutaneous 
hypersensitivity induced by direct compressive nerve lesion 
[137, 138], spared nerve injury [164, 136, 170, 137], and 
local neuroinflammation [131, 133, 134]. Also, sensitization 
gradually fades without supporting noxious input [101, 129, 
131, 133, 134, 136, 138]. Such temporal intermittency of sen-
sitization intensity could explain interictal increase and ictal 
decrease in sensory thresholds [181•]. Furthermore, as dis-
cussed above, development of sensitization is triggered dose-
dependent: Cranial neurovascular entrapment may not occur 
if trigger intensity is not sufficient to induce vasodilation. The 
dose-dependence of sensitization implies that subsymptomatic 
interictal sensitization (or latent sensitization [18]) may exist in 
some migraineurs, which can account for the hypothetical per-
sistence of the premonitory phase in chronic migraine [247]. 
Also, rhythmic neural activity and in particular its accidental 
synchrony with neurovascular entrapment may influence inter-
changeable occurrence of ictal and interictal spells.

Signs of Peripheral Nerve Damage in Migraine

Axonal abnormalities of the zygomaticotemporal branch of 
the trigeminal nerve in migraineurs have been confirmed by 
electron microscopy [248]. Recent relevant neuroimaging 

studies have also observed microstructural changes of the 
trigeminal nerve root [249, 250]. Trigeminal nerve damage 
in migraineurs, as well as in tension-type and cluster head-
ache patients, is further evidenced by sensory disturbances 
of the face [251]. Cranial allodynia in migraine [186, 185, 
187, 188, 183, 184] is a significant indication of trigeminal 
nerve lesion. Association of allodynia with occurrence of 
extracephalic symptoms [252] may be an indication of the 
degree of trigeminal nerve damage.

Gray and white matter alterations that have been found 
in migraineurs [253–255] may be due to reduced sensory 
input [256, 257], which obviously requires trigeminal 
nerve lesion. Notably, classical (primary) trigeminal neu-
ralgia, which is associated with neurovascular compres-
sion [258], involves both gray matter changes [259, 260] 
and trigeminal nerve atrophy [260]. Likewise, in carpal 
tunnel syndrome, alterations of gray matter [261, 262] as 
well as of white matter [261, 263] have been found. Simi-
lar brain changes in neuropathic pain [264–266], includ-
ing radiculopathy [267], may also be due to peripheral 
nerve damage.

Neural injury in migraine may be difficult to detect 
because of the subtle, transient nature of neurovascular 
compression. Unfortunately, autopsy studies of trigeminal 
neuron counts in migraineurs are lacking.

Why Are There Migraine Headaches?

Why do migraine headaches not invariably occur in eve-
ryone exposed to migraine triggers? This is a key question 
in testing speculative pathophysiological mechanisms of 
migraine. It is known that migraineurs have lower migraine 
threshold compared to healthy individuals [181•], i.e., 
migraineurs require relatively weaker triggers to elicit 
headache. Genetic mechanisms have been supposed to be 
responsible for the neural hyperexcitability in migraineurs 
[176, 177, 268]. On the other hand, migraine is clearly 
an acquired condition, as implied by epidemiologic age-
related studies [1, 269, 270]. Certain anatomical circum-
stances in migraineurs, in contrast to non-migraineurs, 
may enable vasodilation to cause neurovascular entrap-
ment and consequent sensitization. The current report sug-
gests that realization of genetic predisposition to migraine 
occurs via inheritance of entrapment-prone relationships 
between neurovascular and fibro-osseous structures. This 
supposition finds support in, e.g., observations of induc-
tion of migraine by trauma [271] and by acquired, as well 
as by genetic, vasculopathies [272].

Cranial nerves belong to the peripheral nervous system, and 
there are many analogies of nociceptive transmission between 
all pain types. Why then do we not see migraine-like pain in  
extracephalic regions where neurovascular compression can 
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also occur (e.g., in the thoracic outlet)? Apart from the distinct 
features of neurobiology of cranial nerves and their proximity  
to the cerebral cortex, other anatomo-functional differences 
between cranial and extracephalic entrapment should be  
considered. First, all cranial nerves, differently from periph-
eral extracephalic nerves, pass through tight bony openings. 
Increased pressure within these sites cannot be completely ame-
liorated by elasticity of the surrounding tissue. Second, whereas 
cranial nerves are almost static, extracephalic nerves are rela-
tively mobile, which enables frequent change of the compres-
sion point with an effect of preventing disturbance of neural 
blood and axoplasmic flow. Therefore, vasodilation may not 
be sufficient to cause extracephalic neural entrapment, which 
usually involves constant pressure by paraneural fibrous struc-
tures (but see also a relevant discussion in [117]). Third, as the 
cranium is a tightly closed compartment, an increased intracra-
nial pressure simultaneously affects multiple neural structures 
at multiple sites. Consequent subclinical activation of non-
trigeminal nerves may contribute to symptomatic trigeminal 
sensitization via neurogenic mechanisms addressed above.

Neurovascular Compression and other 
Primary Headaches

In general, the above evidence of neuropathic etiology of 
migraine is applicable to other primary headaches, primar-
ily because the trigeminocervical complex is a common 
anatomical substrate of all headaches [273, 158]. The dis-
tinct clinical features of primary headaches may be due to 
different sites and modes of neurovascular compression, 
as well as due to varying combinations of multiple entrap-
ment sites of the trigeminal and other cranial nerves. For 
example, nummular headaches [274] can be well explained 
by focal neurovascular compression of sensory trigemi-
nal collaterals by transcranial veins within the emissary 
canals. Considering the perplexity of the cranial sensory 
anatomy, it is not surprising that primary headaches pre-
sent with numerous concomitant symptoms. Primary head-
aches, in particular migraine and tension-type headaches, 
share not only common anatomical but also pathophysi-
ological [275–277] and clinical [145, 278–280] features. 
Nitroglycerin can induce corresponding headache types 
in patients with migraine, tension-type headache, and 
cluster headache [281], which suggest that neurovascular 
compression by vasodilation may be entailed in all these 
conditions. Vasoconstriction as a cause of neurovascular 
compression may also be involved, e.g., as in trigeminal 
neuralgia [258]. The multitude of cranial neurovascular 
entrapment-prone sites may account for the high frequency 
of primary headaches.

Conclusions

Indirect evidence suggests that etiopathogenesis of migraine 
involves vasodilation-induced compression of the trigeminal 
nerve. The concept of anatomically predisposed cranial neuro-
vascular compression can provide a reasonable alternative to the 
current explanations of origin of sensitization in migraine. Allo-
dynic rather than purely nociceptive nature of migraine and other 
primary headaches fits better the current anatomo-physiological 
knowledge. Even per se non-painful transient vasodilation may 
cause trigeminal nerve compression at entrapment-prone sites, 
which can lead to intracranial sensitization and consequent 
allodynia. Trigeminal compression-induced focal neuroinflam-
mation may spread as a neurogenic neuroinflammation via 
anatomofunctional interconnections of cranial and upper cervi-
cal nerves, which can result in sensitization of multiple cranial 
nerves; an inverse process is theoretically possible as well. While 
central excitatory processes contribute to trigeminal hypersensi-
tivity, symptomatic sensitization of trigeminal pathways is more 
likely to occur in ascending than in descending manner. Alter-
nating intensity of sensitization as well as accidental synchrony 
between trigger dose-dependent neurovascular compression 
and other triggering and anatomical factors may account for 
laterality and phasic nature of migraine headache. Failures of 
surgical extracranial neurovascular decompression in migraine 
may be due to unreleased intracranial, intraneural, and double 
crush-type neurovascular compression. Aiming research at the 
neurovascular mechanisms of intracranial allodynia, including 
experimental imitation of neurovascular compression and deter-
mination of detailed time course of cerebral vasoactive changes 
in migraineurs, may help to resolve the longstanding dispute 
concerning the role of vasodilation in migraine.
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