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Abstract

IMPORTANCE Artificial intelligence (AI) has permeated academia, especially OpenAI Chat
Generative Pretrained Transformer (ChatGPT), a large language model. However, little has been
reported on its use in medical research.

OBJECTIVE To assess a chatbot’s capability to generate and grade medical research abstracts.

DESIGN, SETTING, AND PARTICIPANTS In this cross-sectional study, ChatGPT versions 3.5 and 4.0
(referred to as chatbot 1 and chatbot 2) were coached to generate 10 abstracts by providing
background literature, prompts, analyzed data for each topic, and 10 previously presented,
unassociated abstracts to serve as models. The study was conducted between August 2023 and
February 2024 (including data analysis).

EXPOSURE Abstract versions utilizing the same topic and data were written by a surgical trainee or
a senior physician or generated by chatbot 1 and chatbot 2 for comparison. The 10 training abstracts
were written by 8 surgical residents or fellows, edited by the same senior surgeon, at a high-volume
hospital in the Southeastern US with an emphasis on outcomes-based research. Abstract comparison
was then based on 10 abstracts written by 5 surgical trainees within the first 6 months of their
research year, edited by the same senior author.

MAIN OUTCOMES AND MEASURES The primary outcome measurements were the abstract grades
using 10- and 20-point scales and ranks (first to fourth). Abstract versions by chatbot 1, chatbot 2,
junior residents, and the senior author were compared and judged by blinded surgeon-reviewers as
well as both chatbot models. Five academic attending surgeons from Denmark, the UK, and the US,
with extensive experience in surgical organizations, research, and abstract evaluation served as
reviewers.

RESULTS Surgeon-reviewers were unable to differentiate between abstract versions. Each reviewer
ranked an AI-generated version first at least once. Abstracts demonstrated no difference in their
median (IQR) 10-point scores (resident, 7.0 [6.0-8.0]; senior author, 7.0 [6.0-8.0]; chatbot 1, 7.0
[6.0-8.0]; chatbot 2, 7.0 [6.0-8.0]; P = .61), 20-point scores (resident, 14.0 [12.0-7.0]; senior author,
15.0 [13.0-17.0]; chatbot 1, 14.0 [12.0-16.0]; chatbot 2, 14.0 [13.0-16.0]; P = .50), or rank (resident,
3.0 [1.0-4.0]; senior author, 2.0 [1.0-4.0]; chatbot 1, 3.0 [2.0-4.0]; chatbot 2, 2.0 [1.0-3.0]; P = .14).
The abstract grades given by chatbot 1 were comparable to the surgeon-reviewers’ grades. However,
chatbot 2 graded more favorably than the surgeon-reviewers and chatbot 1. Median (IQR) chatbot
2-reviewer grades were higher than surgeon-reviewer grades of all 4 abstract versions (resident, 14.0
[12.0-17.0] vs 16.9 [16.0-17.5]; P = .02; senior author, 15.0 [13.0-17.0] vs 17.0 [16.5-18.0]; P = .03;
chatbot 1, 14.0 [12.0-16.0] vs 17.8 [17.5-18.5]; P = .002; chatbot 2, 14.0 [13.0-16.0] vs 16.8 [14.5-18.0];
P = .04). When comparing the grades of the 2 chatbots, chatbot 2 gave higher median (IQR) grades
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Abstract (continued)

for abstracts than chatbot 1 (resident, 14.0 [13.0-15.0] vs 16.9 [16.0-17.5]; P = .003; senior author, 13.5
[13.0-15.5] vs 17.0 [16.5-18.0]; P = .004; chatbot 1, 14.5 [13.0-15.0] vs 17.8 [17.5-18.5]; P = .003;
chatbot 2, 14.0 [13.0-15.0] vs 16.8 [14.5-18.0]; P = .01).

CONCLUSIONS AND RELEVANCE In this cross-sectional study, trained chatbots generated
convincing medical abstracts, undifferentiable from resident or senior author drafts. Chatbot 1
graded abstracts similarly to surgeon-reviewers, while chatbot 2 was less stringent. These findings
may assist surgeon-scientists in successfully implementing AI in medical research.
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Introduction

The introduction of artificial intelligence (AI) into the medical field has been both a promising and
polarizing venture. Particularly, OpenAI Chat Generative Pretrained Transformer (ChatGPT; versions
3.5 and 4.0) is a new large language model, or chatbot, that has been trained from massive datasets
to respond to prompts with sophisticated human-like answers.1,2 Medical professionals agree that
these large language models have opened the door for new possibilities in medicine but also
Pandora’s box. Arguments can be made for the benefit of AI in scientific research as well as for
conflicts associated with AI in medicine.

The most common controversies associated with chatbots are the encroachment of plagiarism,
biased training data, lack of creativity, and the spread of misinformation.3 Many surgeon-scientists
worry that chatbots pull from sources that cannot be given proper credit, leading to plagiarism and
copyright infringement.4,5 Although chatbots are trained on a plethora of information, there is little
transparency in the data’s origin.1,6,7 As new reporting guidelines7-9 recommend how to describe the
role of AI in a project, publishers and editors grapple with the listing of chatbots as an author. Some
argue that chatbots should not be listed as an author because they cannot take responsibility for
what is written.1,7,10-12 The ability of chatbots to generate novel ideas or think critically has also been
questioned.4,13-15 Of particular concern is the spread of misinformation.4,10 Chatbots are not trained
exclusively on medical texts, so there can be blatant inaccuracies (ie, hallucinations) in some of the
AI responses.2,16-18 Chatbots state this information with a false confidence that precludes inaccuracy
unless scrutinized by a well-versed health care clinician.18 Whether chatbots are endorsed by the
scientific community or not, patients will inevitably use them to answer medical questions, so
physicians should be invested in how to best validate the knowledge they emit.4,15,18

As a counterargument to these concerns, AI has several beneficial applications to the field of
health care.1,4,7,18-21 Chatbots have demonstrated the ability to translate text4,11 and be integrated into
hospital electronic medical records.21 They have even passed the US Medical Licensing Examination
steps 1 and 2, which are required by medical students to earn their degree.22 The role of chatbots in
scientific writing is being explored23-25 with the goal of improving efficiency and productivity of
surgeon-scientists.4,6,10,14 If chatbots can be trained to assist in generating text for publication,
scientists can devote more time to the complex pursuits involved in research.1,2,4 The goal of our
study was to train 2 chatbots to generate medical research abstracts and assess how these abstracts
compared with resident- and senior author–written abstracts as reviewed by blinded, well-
published surgeons in the field. Furthermore, we evaluated the ability of chatbots to grade and rank
medical abstracts when taught with a rubric.
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Methods

This cross-sectional study was performed at a tertiary care center in the Southeastern US and was
determined exempt from review and the requirement of informed consent by the Carolinas Medical
Center institutional review board. All abstracts utilized were written about a study previously
approved by the Carolinas Medical Center institutional review board. This report follows
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting
guideline. The study was conducted between August 2023 and February 2024 (including data
analysis).

Chatbot Training
OpenAI ChatGPT (versions 3.5 and 4.0; hereafter referred to as chatbot 1 and chatbot 2) was trained
to generate medical abstracts based on provided abstracts as examples. The research residents and
senior attending physician identified 10 abstracts26-35 by our group from 2012 to 2022 that were
presented at national meetings and published in surgical journals to serve as the training models.
There was variation in the first author of each abstract, a junior trainee, but all studies had the same
senior author (B.T.H.). These abstracts were inputted as examples of our group’s writing style to
provide few-shot learning (training an existing model by providing it examples to work from) for
chatbot 1 and chatbot 2. The chatbots were prompted to note the similarities between the abstracts
and confirm that they had saved our writing style. See eAppendix 1 in Supplement 1 for
exact prompts.

Chatbot Testing and Writing
Ten additional abstracts36-45 were used to investigate the chatbots’ ability to generate scientific
abstracts. These abstracts were written by 5 different trainees within the first 6 months of their
research year at the same medical center between 2018 to 2023 to account for the novice period.
Abstracts from the current year’s research residents and fellows were excluded. All abstracts had the
same senior author as the training abstracts (B.T.H.) and were submitted and presented at a variety
of national and international conferences. Finally, these abstracts could only be included if we had
access to the initial draft and final submitted version, the statistically analyzed research data, and a
literature review of information concerning the topic of the abstract.

Once the chatbots were trained, we asked that it generate a scientific abstract based on the
information provided. For each of the 10 abstracts, the chatbots were given the introduction and
discussion of 3 relevant publications.46-75 Text limitations prevented us from giving the chatbots the
entire article. Next, we provided our prompt.6,16 Specifically, we told the chatbots to generate text
in the style of a senior surgeon-scientist with over 20 years of experience, like our senior author
(B.T.H.). The analyzed real-world research data from each study was then pasted into the chat box.
Finally, using the background literature, its knowledge as an experienced surgeon, and the data
analysis, we asked both chatbot 1 and chatbot 2 to generate a version of each abstract in the trained
writing style and in the specified format that was required by each national conference. An example
prompt is available in eAppendix 1 in Supplement 1.

Abstract Comparison
Once chatbot 1 and chatbot 2 generated abstracts of each of the 10 studies, these were compared
with the resident’s first unedited draft and the senior surgeon’s edited, submitted version of the
same abstract. The 4 versions were deidentified and sent to 5 blinded surgeon-reviewers (J.E.J.,
L.N.J, J.P.F., N.J.S., and K.W.K.). The 5 surgeons come from academic practices in Denmark, the UK,
and the US, and all have served as presidents or board members of international surgical
organizations or editorial boards with extensive experience in research and abstract writing and
grading. The reviewers were asked to independently score the 4 versions of the abstracts on a 10-
and 20-point scale. The 10-point scale was based on a typical abstract rubric. The 20-point scale was
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based on the American Society of Plastic Surgeons, which entailed 4 categories: completeness,
relevance, quality, and exposure (each worth 5 points). See eAppendix 2 in Supplement 1 for the
rubrics. The reviewers were also asked to force rank the 4 abstract versions from first to fourth, with
first being the best abstract and fourth being the worst, with no ties. They were asked to repeat these
grading methods for all 10 abstracts for a total of 40 versions. Additionally, in a separate session, we
tasked chatbot 1 and chatbot 2 with grading all 40 abstract versions. The chatbots were provided
with the same instructions on a standard 10-point rubric with 10 being the best and a 20-point rubric
broken into 4 categories: completeness, relevance, quality, and exposure. See eAppendix 3 in
Supplement 1 for the prompt and rubric provided to the chatbots.

Statistical Analysis
Standard descriptive and comparison statistics were performed on the abstract versions using SAS
version 9.4 (SAS Institute). The Fisher exact test was applied to compare categorical variables, and
Kruskal-Wallis was utilized to compare continuous variables. All P values were 2-sided, and statistical
significance was set at P < .05. We hypothesized that the chatbots would generate similarly graded
and ranked abstracts as those written by surgical trainees and senior surgeons.

Results

Descriptive Statistics
Each surgeon-reviewer ranked an AI-generated version of an abstract first at least once, and 1
reviewer ranked either the chatbot 1 or chatbot 2 version first every time. The surgeon-reviewers
ranked the resident’s version first 14 of 50 times and last 14 of 50 times. They ranked the senior
author’s version first 13 of 50 times and last 13 of 50 times. The chatbot 1 version was ranked first
least often (7 of 50 times) and ranked last most often (16 of 50 times). The chatbot 2 version was
ranked first most often (16 of 50 times) and was ranked last least often (7 of 50 times) (Figure).

When the chatbots acted as the reviewer, chatbot 1 ranked its own version most favorably,
ranking the resident’s version first only 1 of 10 times, the senior author’s version first 3 of 10 times, its
own version first 5 of 10 times, and the chatbot 2 version first 1 of 10 times. Chatbot 1 ranked the
resident’s version last 3 of 10 times, the senior author’s version last 2 of 10 times, its own version last
2 of 10 times, and the chatbot 2 version last 3 of 10 times. Contrastingly, chatbot 2 was more critical
of its own abstracts. Chatbot 2 ranked the resident’s version first 2 of 10 times and the senior author’s

Figure. Distribution of Abstract Ranks by Surgeon-Reviewers
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version first 2 of 10 times, but it ranked the chatbot 1 version first 6 of 10 times and its own version
first 0 of 10 times. Chatbot 2 never ranked chatbot 1 last and ranked itself last 4 of 10 times, the
resident last 3 of 10 times, and senior author last 3 of 10 times.

When the frequency of ranks between surgeon-reviewer and chatbot-reviewer was compared,
there was no statistical difference in the frequency that the resident or senior author’s abstracts were
ranked; however, there was a statistical difference in how the chatbot 1 version and chatbot 2 version
were ranked (Table 1). Both the surgeon-reviewers and chatbot-reviewers ranked the resident and
senior author’s abstracts similarly, but they ranked chatbot 1 and chatbot 2 abstracts significantly
differently. Surgeon-reviewers ranked chatbot 1 abstracts last frequently, while chatbot-reviewers
did not. Surgeon-reviewers ranked chatbot 2 abstracts first frequently, while chatbot-reviewers
ranked it worse.

Chatbots as Abstract Generators
There was no statistical difference in the median (IQR) 10-point scores of the resident (7.0 [6.0-8.0]),
senior author (7.0 [6.0-8.0]), chatbot 1 (7.0 [6.0-8.0]), or chatbot 2 (7.0 [6.0-8.0]) (P = .61). Again,
on the 20-point scale, the surgeon-reviewers did not prefer the resident abstracts (median [IQR]
score, 14.0 [12.0-17.0]) or senior author’s abstracts (median [IQR] score, 15.0 [13.0-17.0]) over the
chatbot 1 (median [IQR] score, 14.0 [12.0-.16.0]) and chatbot 2 versions (median [IQR] score, 14.0
[13.0-16.0]) (P = .50). The reviewers’ median (IQR) rank did not differ significantly between abstract
versions written by residents (3.0 [1.0-4.0]) or senior authors (2.0 [1.0-4.0]) and abstract versions
generated by chatbot 1 (3.0 [2.0-4.0]) or chatbot 2 (2.0 [1.0-3.0]) (P = .14) (Table 2). When only
comparing the reviews of chatbot 1 and chatbot 2, there was no statistical difference in the 10-point
or 20-point scores, but the surgeon-reviewers statistically ranked chatbot 2 better (median [IQR]
rank for chatbot 1, 3.0 [2.0-4.0] vs chatbot 2, 2.0 [1.0-3.0]; P = .02) (Table 3).

Chatbots as a Grader
When comparing the surgeon-reviewers with chatbot 1 as a reviewer, there was no difference in their
10-point scores, 20-point scores, or ranks of any abstract version. Contrastingly, when comparing

Table 1. Frequency of Ranks by Surgeon-Reviewers Compared With Generative Language Model-Reviewers

Abstract version and ranka

Grader, No. (%)

P valuebSurgeon (n = 50) Chatbot 1 (n = 10) Chatbot 2 (n = 10)
Resident

1 14 (28.0) 1 (10.0) 2 (20.0)

.67
2 9 (18.0) 4 (40.0) 1 (10.0)

3 13 (26.0) 2 (20.0) 4 (40.0)

4 14 (28.0) 3 (30.0) 3 (30.0)

Senior author

1 13 (26.0) 3 (30.0) 2 (20.0)

.76
2 17 (34.0) 2 (20.0) 2 (20.0)

3 7 (14.0) 3 (30.0) 3 (30.0)

4 13 (26.0) 2 (20.0) 3 (30.0)

Chatbot 1

1 7 (14.0) 5 (50.0) 6 (60.0)

.02
2 13 (26.0) 2 (20.0) 2 (20.0)

3 14 (28.0) 1 (10.0) 2 (20.0)

4 16 (32.0) 2 (20.0) 0

Chatbot 2

1 16 (32.0) 1 (10.0) 0

.04
2 11 (22.0) 2 (20.0) 5 (50.0)

3 16 (32.0) 4 (40.0) 1 (10.0)

4 7 (14.0) 3 (30.0) 4 (40.0)

a Abstracts were either written by a research resident
within the first 6 months of their research year, were
the final submitted version edited by a senior author,
or were generated by chatbot 1 (Chat Generative
Pretrained Transformer [GPT] version 3.5) or chatbot
2 (Chat-GPT version 4.0).

b Statistical significance was P < .05.
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the surgeon-reviewers with chatbot 2 as a reviewer, there was a statistical difference in median
grades and ranks. Particularly on the 20-point scale, chatbot 2 graded higher than the surgeon-
grader for the resident’s abstract version (median [IQR] grade, 14.0 [12.0-17.0] vs 16.9 [16.0-17.5];
P = .02), the senior author’s abstract version (median [IQR] grade, 15.0 [13.0-17.0] vs 17.0 [16.5-18.0];
P = .03), the chatbot 1 abstract version (median [IQR] grade, 14.0 [12.0-16.0] vs 17.8 [17.5-18.5];
P = .002), and the chatbot 2 abstract version (median [IQR] grade, 14.0 [13.0-16.0] vs 16.8
[14.5-18.0]; P = .04). When the reviews by chatbot 1 and chatbot 2 were compared, again chatbot 2
gave higher median (IQR) grades for all 4 abstract versions on the 20-point scale (resident, 13.5 [13.0-
15.0] vs 16.9 [16.0-17.5]; P = .003; senior author, 13.5 [13.0-15.5] vs 17.0 [16.5-18.0]; P = .004; chatbot
1, 14.5 [13.0-15.0] vs 17.8 [17.5-18.5]; P = .003; chatbot 2, 14.0 [13.0-15.0] vs 16.8 [14.5-18.0]; P = .01).
See Table 4 for full analysis.

Discussion

The first aim of this cross-sectional study was to evaluate if chatbots could generate scientific
abstracts as well as a research resident or senior author. Based on 10- and 20-point scales, the
abstracts were not differentiable. When force ranked, the chatbot 2 version was ranked first most
frequently and the chatbot 1 version was ranked last most frequently. The second goal of this study
was to assess how similarly chatbot- and surgeon-reviewers could grade abstracts. Chatbot 1 abstract
grades were comparable to the surgeon-reviewers’ grades. However, chatbot 2 graded more
favorably than the surgeon-reviewers and chatbot 1. Further observations were that the chatbots
consistently utilized the provided results and did not hallucinate new data.

Although editors have worked quickly to regulate the implementation of AI in scientific writing,
if it is permitted at all,14 AI continues to permeate all fields of medicine, academia, and research.1,4

The goal of this study was to evaluate if chatbots could generate and grade medical research
abstracts. We found that, when trained using real-world data, chatbots could generate medical
research abstracts in a manner that was not able to be differentiated from a human researcher. This
is a promising and exciting observation, but further exploration should elucidate the ability of
chatbots to consistently grade abstracts, given that the ability varied between chatbots 1 and 2 in our
study. There are a variety of rubrics and scoring systems utilized in consideration for national
meetings, but our findings indicate that a greater range point-system with defined categories is
helpful to discern abstract quality. Abstract grading and consideration are time consuming, but the
chatbots showed the potential to expedite this process and could help narrow down the number of
abstracts human-reviewers need to read. Our group continues to explore the capability of chatbots
as an abstract grader by more extensively training the AI model.

Table 2. Chatbots an Abstract Generator: Comparison of Grades by Surgeon-Reviewersa

Grading scale

Grade by surgeon reviewer, median (IQR)

P valuebResident Senior author Chatbot 1 Chatbot 2

10-Point scale 7.0 (6.0-8.0) 7.0 (6.0-8.0) 7.0 (6.0-8.0) 7.0 (6.0-8.0) .61

20-Point scale 14.0 (12.0-17.0) 15.0 (13.0-17.0) 14.0 (12.0-16.0) 14.0 (13.0-16.0) .50

Rank 3.0 (1.0-4.0) 2.0 (1.0-4.0) 3.0 (2.0-4.0) 2.0 (1.0-3.0) .14

a Abstracts were either written by a research resident
within the first 6 months of their research year, were
the final submitted version edited by a senior author,
or were generated by chatbot 1 (Chat Generative
Pretrained Transformer [GPT] version 3.5) or chatbot
2 (Chat-GPT version 4.0).

b Statistical significance was P < .05.

Table 3. Chatbots as an Abstract Generator: Comparison of Grades Subgroup Analysis: Chatbot 1 vs Chatbot 2a

Grading scale

Grade by surgeon reviewer, median (IQR)

P valuebChatbot 1 Chatbot 2

10-Point scale 7.0 (6.0-8.0) 7.0 (6.0-8.0) .41

20-Point scale 14.0 (12.0-16.0) 14.0 (13.0-16.0) .41

Rank 3.0 (2.0-4.0) 2.0 (1.0-3.0) .02

a Abstracts were generated by chatbot 1 (Chat
Generative Pretrained Transformer [GPT] version
3.5) or chatbot 2 (Chat-GPT version 4.0) and graded
by 5 surgeon-reviewers.

b Statistical significance was P < .05.
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Despite successful implementation of AI in numerous areas of academia, like all new
technologies, there is hesitancy to change.15 Chatbots gather information from unknown sources
that cannot be directly cited, leading to controversy over plagiarism and copyright infringement.4,5

To combat this ethical dilemma, some investigators have asked chatbots to provide a list of
references,4,13 but when cross-checked, the sources chatbots provided were sometimes falsified.10,11

In the medical field, where patient privacy is extremely important, there is a particular worry about
the security of patient information shared with chatbots.1,4 Detractors have labeled chatbots a
“stochastic parrot”1 that “threatens the trajectory”13 of modern medicine and scientific research.
Some believe chatbots will stifle creativity, replace the learned ability of students to write papers, and
degrade the sense of academic integrity.14,15,76 The counterargument is that learners still develop
these writing skills, but in a nontraditional way, by editing chatbot output.15

Arguably, the most pertinent debate against chatbots is the spread of misinformation.4,10 The
hallucinations18 produced by chatbots may present as fake statistics77 or inaccurate answers to
medical questions. Emile et al78 assessed a chatbot’s ability to answer common questions about
colon cancer, and Samaan et al79 reviewed the accuracy of a chatbot’s answers regarding bariatric
surgery. Both found that the responses were mostly accurate, but there were certainly incorrect
answers as well.78,79 Patients using chatbots may not be able to discern fact from fiction, so
physicians, whether they support AI or not, should be invested in how their patients are using it.4,15,18

Despite these concerns, chatbots have potential in the medical community, including the
potential to boost productivity in scientific writing. Chatbots can save researchers time by formatting
papers specific to a journal,1,4 running statistics,18 and accelerating the publishing process, which
alleviates pressure on surgeon-scientists.4,6,10,14 Chatbots can also be leveraged to reduce effort
spent preparing a manuscript or grant by editing preexisting text, enhancing readability, and
decreasing the number of rounds of feedback between authors.4,10 By increasing efficiency, some
believe that chatbots can provide time to devote to more valuable pursuits.1,2,4 The ultimate goal of
medical research is to advance knowledge and improve health for patients, so if we can employ AI1,4

to perform the routine tasks of research, we can spend more time on the creative aspects, complex
questions, and critical thinking involved in research.

Table 4. Chatbots as a Grader: Comparison of Grades and Ranks Given by Surgeon-Reviewers vs Chatbot-Reviewersa

Abstract version

Grade, median (IQR)

P valueb

Grade, median (IQR)

P valueb

Grade, median (IQR)

P valuebSurgeon-grader Chatbot 1-grader Surgeon-grader Chatbot 2-grader Chatbot 1-grader Chatbot 2-grader

10-Point scale

Resident 7.0 (6.0-8.0) 7.0 (6.7-7.5) .89 7.0 (6.0-8.0) 7.5 (7.5-7.8) .24 7.0 (6.7-7.5) 7.5 (7.5-7.8) .12

Senior author 7.0 (6.0-8.0) 7.3 (6.4-8.0) .86 7.0 (6.0-8.0) 7.5 (7.5-7.8) .13 7.3 (6.4-8.0) 7.5 (7.5-7.8) .30

Chatbot 1 7.0 (6.0-8.0) 7.2 (6.5-7.8) .10 7.0 (6.0-8.0) 8.2 (8.0-8.5) .003 7.2 (6.5-7.8) 8.2 (8.0-8.5) .02

Chatbot 2 7.0 (6.0-8.0) 7.3 (6.2-7.5) .76 7.0 (6.0-8.0) 7.9 (7.0-8.0) .14 7.3 (6.2-7.5) 7.9 (7.0-8.0) .08

20-Point scale

Resident 14.0 (12.0-17.0) 14.0 (13.0-15.0) .79 14.0 (12.0-17.0) 16.9 (16.0-17.5) .02 14.0 (13.0-15.0) 16.9 (16.0-17.5) .003

Senior author 15.0 (13.0-17.0) 13.5 (13.0-15.5) .28 15.0 (13.0-17.0) 17.0 (16.5-18.0) .03 13.5 (13.0-15.5) 17.0 (16.5-18.0) .004

Chatbot 1 14.0 (12.0-16.0) 14.5 (13.0-15.0) .48 14.0 (12.0-16.0) 17.8 (17.5-18.5) .002 14.5 (13.0-15.0) 17.8 (17.5-18.5) .003

Chatbot 2 14.0 (13.0-16.0) 14.0 (13.0-15.0) .79 14.0 (13.0-16.0) 16.8 (14.5-18.0) .04 14.0 (13.0-15.0) 16.8 (14.5-18.0) .01

Rank, quartile
(range)

Resident 3.0 (1.0-4.0) 2.5 (2.0-4.0) .70 3.0 (1.0-4.0) 3.0 (2.0-4.0) .54 2.5 (2.0-4.0) 3.0 (2.0-4.0) .78

Senior author 2.0 (1.0-4.0) 2.5 (1.0-3.0) >.99 2.0 (1.0-4.0) 3.0 (2.0-4.0) .45 2.5 (1.0-3.0) 3.0 (2.0-4.0) .56

Chatbot 1 3.0 (2.0-4.0) 1.5 (1.0-3.0) .05 3.0 (2.0-4.0) 1.0 (1.0-2.0) .002 1.5 (1.0-3.0) 1.0 (1.0-2.0) .51

Chatbot 2 2.0 (1.0-3.0) 3.0 (2.0-4.0) .10 2.0 (1.0-3.0) 2.5 (2.0-4.0) .11 3.0 (2.0-4.0) 2.5 (2.0-4.0) .94

a Abstracts were either written by a research resident within the first 6 months of their research year, were the final submitted version edited by a senior author, or were generated
by chatbot 1 (Chat Generative Pretrained Transformer [GPT] version 3.5) or chatbot 2 (Chat-GPT version 4.0).

b Statistical significance was P < .05.
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Prior studies have investigated the ability of chatbots to regenerate available medical research
abstracts. Gao et al77 provided a chatbot with the title and journal name of previously published
abstracts, while Levin et al23 provided the title and results section and asked it to regenerate the text.
Gao et al77 found that human-reviewers correctly identified 68% of the chatbot-written abstracts
and 86% of the human-written abstracts, but the chatbot versions were noted to be vague, making
it easier to correctly distinguish them. Levin et al23 showed that AI-generated versions had fewer
grammatical errors and more unique words than the scientist-written version, making these more
difficult to distinguish.24,25

This study stands apart from prior work on AI-writing because the chatbots were provided with
more than just a title and journal name.77 By training chatbots to generate text in our group’s writing
style and inputting background, previously published studies, and statistically analyzed data for each
abstract, we combatted the tendency for chatbots to hallucinate results. We suspect that as chatbots
become more sophisticated, the potential to generate abstracts may surpass the ability of some
researchers and may expand to generating full manuscripts.

One of the interesting observations we encountered while working with the chatbots was the
variation between the chatbots 1 and 2. Both chatbot 1 and chatbot 2 were trained with data
extending until September 2021, but chatbot 2 is considered the more advanced version80 and in our
experience, had more independent thinking.81 When asking the chatbots to generate text, we used
the same online session to provide consistency. Chatbot 1 was compliant and completed the tasks
without needing redirection, but chatbot 2 had difficulty complying, required restarting new
sessions, retraining each one, and several reminders of the prompt to finish writing all 10 abstracts.
Although we intended to train the chatbots on more than 10 abstracts, often after the fifth abstract,
chatbot 2 pushed back, stating that it did not need more abstracts to learn the writing style. We
proceeded, however, in training the chatbots with 10 abstracts. Despite chatbot 2 being less
compliant, blinded surgeons agreed that the chatbot 2 abstract versions were better and more
consistent than the chatbot 1 versions. The chatbots followed directions on grading more easily,
suggesting future promise in saving researchers and editors’ time.

Both advocates and skeptics mostly agree that chatbots will not replace surgeons as primary
decision makers in the near future.4,6,17,21 AI has the potential to complement patient-clinician
interactions and assist in medical research, but it will be difficult for AI to replace a surgeon’s
judgement.6,17,21 Chatbots can serve as a helpful ally in medical abstract generating and grading, but
at this point in its evolution, AI cannot perform independently. In the meantime, our goal is to
leverage AI for the function of better research and ultimately better patient care.4,14 AI is permeating
all facets of medicine, and as clinicians, we need to decide the best approach to incorporate it into
our research and clinical space.

Limitations
The primary limitation of this study was the small sample size of abstracts and reviewers. To combat
this limitation, we intentionally chose surgeons who had extensive experience and represented
different practice models and international backgrounds. Furthermore, this work is based on
abdominal wall reconstruction abstracts and thus may not translate to other fields of medicine. There
are also limitations of chatbots. The chatbots have a knowledge cutoff in September 2021 and do not
have the ability to browse the internet for more recent context. Chatbots are dependent on the data
and training they received, which could result in bias that they learned.3,82 The chatbots additionally
have a token cutoff, or character limit, which may inhibit the quantity of training or prompting the
model can learn at a time.17

Conclusions

The findings of this cross-sectional study suggest that a chatbot can generate quality medical
research abstracts when the user spends the time to train it, feed it background information, and

JAMA Network Open | Surgery Abstracts Written by Medical Researchers vs Generated by Large Language Models

JAMA Network Open. 2024;7(8):e2425373. doi:10.1001/jamanetworkopen.2024.25373 (Reprinted) August 2, 2024 8/13

Downloaded from jamanetwork.com by The Ohio State University Health Sciences Library user on 08/07/2024



supply it with analyzed data. The chatbots in this study also demonstrated the ability to grade
abstracts, with chatbot 2 being less stringent than chatbot 1. The findings of this study serve as an
example of successful and safe implementation of AI in scientific writing, which we hope is
considered as editors and publishers continue to determine the regulation and acceptable role of AI.
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